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Abstract—Experiments were performed on short aluminium and steel round tubes to study the
nature of their axisymmetric folding and the extent by which a tube folds internally. The mean
diameter to thickness (D/r) ratios of these tubes varied from 12 to 30. Typical histories of specimen
deformation and load-compression curves obtained in these tests are presented. It is seen that the
fold formation is not symmetric about its mid plane and the extent of internal folding in each tube
is dependent on its D/t ratio. Based on the experimental observations and considering the formation
of plastic hinges in a perfectly plastic material, a simple analysis is first presented by assuming the

. fold formation to be symmetric. The effect of the non-symmetric fold formation is then considered.
Various features like the fold length, the mean collapse load and the load-compression curve are
derived from the analysis and the computer results are compared with the experiments. € 1997
Elsevier Science Ltd.

INTRODUCTION

Round tubes which collapse progressively in axi-symmetric concertina, diamond or mixed
mode are very good energy absorbers and consequently several experimental and analytical
studies have been devoted to the understanding of the mechanics of deformation involved
in their collapse.

Alexander (1960) gave an analysis of the axi-symmetric concertina mode of defor-
mation, which forms the basis of many later studies. He proposed a simple model (see Fig.
1a) based on the formation of four hinges, wherein the collapsing length of the rigid-plastic
tube consists of two straight arms between the hinges. He obtained the tube fold length by
minimizing the total energy due to the membrane strains and the plastic bending moments
at the hinges, and developed an expression to determine the mean collapse load. In his
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Fig. 1. Models to study the axi-symmetric concertina mode due to (a) Alexander (b) Abramowicz

and Jones.
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analysis, Alexander took bending moment capacity per unit length M, =(1/2V’/3)o—0t2,
where o, was the yield stress of the material. This simple model did provide very good
results of the fold length L = 1.347\/E (where R is the mean diameter of the tube),
however, the mean collapse load is under estimated (see Grzebeita (1990)).

Abramowicz and Jones (1984) later modified Alexander’s model by introducing cur-
vature in the deforming fold length (see Fig. 1(b)). They used ultimate stress instead of the
yield stress to account for the strain hardening, while the material considered was again
rigid plastic. Effective crushing distance was introduced in their analysis and the mean
collapse load thus obtained showed improved results. The bending moment capacity used
in the analysis was M}, = (l/’2v’”§)aut2 (o, being ultimate stress) and the folding length was
found as L = 1.24V/E (about 92% of the length found by Alexander).

Both of the above analyses were directed towards determining the mean collapse load.
Grzebeita (1990), however, gave a method to determine the load history between a peak
and a minimum in a load oscillation of the load-compression curve. The bending moment
capacity that he assessed was M, = (2/\/@)[1 —(3/4)P’]M,,. If the second term in the bracket
is neglected, one obtains M, = (2/V/§)Mp where M, = 6,(1°/4) is the plastic moment per
unit length. Grzebeita proposed a model wherein the curvature was confined around hinges,
and the central span of length, equal to L/3, was flat. In his analysis the fold length was
taken from the analysis given by Alexander (1960), arguing that it agreed with experiments
quite well. In all the above analyses [Alexander (1960), Abramowicz and Jones (1984),
Grzebeita (1990)], the Von-Mises yield criterion has been employed. Wierzbicki ez al. (1992)
have studied the axi-symmetric collapse mode of round tubes by considering the internal
folding. The half fold length determined in their analysis is L = l.76¢”Rt. The plastic hinge
moment capacity taken by them is equal to the hinge moment, i.e. M, = a,(1°/4), where a,
is the average flow stress which is equal to 92% of the ultimate stress of the material. In
this study it was shown that the load-compression curve is dependent on the internal
folding, while the mean collapse load and the folding length are independent of it.

In the present study, experiments were performed on tubes of annealed aluminium and
as received mild steel tubes, with D/t ranging from 12 to 30. All these tubes collapsed in
concertina mode (see N. K. Gupta and S. K. Gupta (1993)), with folds forming both
internally and externally. Their typical load-compression curves are presented. It was seen
that the extent of internal folding varied with D/¢. Typical histories of deforming specimens
are presented to illustrate the mechanism of fold formation. Considering the fold formation
to be symmetric and assuming the formation of plastic hinges, analytical expressions were
obtained to determine the fold length, the mean collapse load, and the post collapse load
compression curve. The results thus obtained have been compared with experimental
results. Analysis shows that the fold length, mean collapse load and load compression curve
depend on the extent of internal folding. An approximate analysis is then carried out by
considering the fold formation to be non-symmetric, as observed in the experiments. Here,
all hinge angles are taken to be different at any time. The post collapse load-compression
curves thus obtained are presented and compared with experiments.

EXPERIMENTAL

Round mild steel and aluminium tubes with diameters ranging from 25 mm to 79 mm
and thicknesses from 1.2 mm to 2.9 mm, were subjected to axial compression in an Instron
machine. Aluminium tubes were annealed in an oven for 40 minutes at 300°C and were
cooled for 24 hours, while steel tubes were tested in ‘as received’ condition.

All these tubes deformed in concertina mode of deformation. The selection of these
tube sizes and heat treatment was based on an earlier experimental study which showed
that for these tube sizes, annealed aluminium tubes deformed in concertina mode while the
annealed mild steel tubes collapsed in diamond mode. ‘As received’ aluminium tubes
generally deformed in diamond mode, while ‘as received” mild steel tubes deformed in
concertina mode (see N. K. Gupta and S. K. Gupta (1993)). Typical axi-symmetric folded
tubes are presented in Fig. 2.
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Fig. 2. Typical axis-symmetric folded round aluminium tube (D = 49.6 mm, ¢ = 1.6 mm) and steel

tube (D =43 mm, ¢ = 1.8 mm). (a) Typical concertina mode: (i) aluminium tube; (ii) steel tube.

(b) Vertically cut deformed steel tube after seven folds. (c) and (d) Vertically cut steel and alumin-
ium tubes at different load levels.
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Fig. 3. Variation of N (ratio of internal fold to external fold) with D/r.

The internal and external fold lengths that were measured experimentally from the
deformed tubes are given in Table 1. It is seen that the ratio (V) of internal folding to the
external folding varies with tube dimensions. This variation is shown in Fig. 3, and is
written in the form of the relation;

Djt —A\'"
N = ! - 1
(75 )

where A = 10, B = 225 and n = 3.1. The mean collapse load for all the tubes was calculated
from the load compression curves, the values thus obtained for some typical tubes are
presented in Table 2. The ultimate tensile strength of these tube specimens were obtained
by testing the standard tensile specimens made out of these tubes and are reported in Table
2. Typical stress-strain curve of an annealed aluminium specimen and an as-received steel
specimen are shown in Fig. 4.

To study the histories of deformation of the tubes in concertina mode, several alu-
minium and mild steel tubes of identical dimensions were tested up to different load levels
namely, the first peak, first minimum, first intermediate peak. first intermediate minimum,
second peak and second minimum. Load-deformation curves for typical aluminium tube

Table 1. Tubes of different dimensions and the fold lengths (mm)

S. number D, t D/t L, Lo Lo/Li
Aluminium tubes
1 47.4 1.7 28.88 4.9 10.4 2.12
2 356 1.5 24.73 4.4 9.3 2.07
3 41.35 1.75 24.63 4.85 11.85 2.44
4 355 1.6 23.19 3.6 7.7 2.40
5 76.4 2.6 30.38 3.38 8.54 2.53
6 44 29 16.17 1.58 7.34 4.65
7 48.0 1.6 31.0 1.73 5.01 29
8 34.16 1.82 19.77 1.28 4.61 2.9
9 35.5 1.4 26.36 3.38 8.54 2.53
10 34.66 1.73 21.03 1.07 3.46 3.24
Steel tubes
11 41.2 1.8 23.89 4.8 12.7 2.6
12 25.7 1.2 22.42 2.36 6.0 2.54
13 50.9 23 23.13 5.5 11.9 2.16
14 23 2.0 12.5 1.9 8.2 4.31
15 28.5 1.85 16.4 3.5 92 2.63
16 35.8 1.6 23.38 4.8 10.3 2.14
17 37.5 1.8 21.83 5.4 12.33 2.28




2616 N. K. Gupta and R. Velmurugan

Table 2. Mean collapse load and ultimate tensile strength of round aluminium tubes

S. D, B,=P,P, o, = Py2nRt
number (mm) /(mm) R (mm) Exp. Ana. (N/mm?)
1 44 29 23.45 0.482 0.525 141
2 48.0 1.6 248 0.455 0.390 162
3 34.16 1.82 17.99 0.468 0.479 178
4 355 1.4 18.45 0.450 0.428 164.85
5 34.66 1.73 18.20 0.467 0.466 156
6 229 1.3 12.1 0.477 0.493 196
500
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Fig. 4. Stress-strain curves of steel and aluminium specimens in uniaxial tension.
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Fig. 5. Effect of folding parameter on the post collapse load-compression curve of D = 49.6 mm,
t = 1.6 mm aluminium tube.

of R =248 mm, { = 1.6 mm and steel tube of R = 21.5 mm, ¢ = 1.8 mm are presented in
Figs 5 and 6.

It is seen that the first peak in the load compression curve is higher than the other
peaks and the second peak is the minimum of all the peaks. After the second peak, the
subsequent peak loads show an increasing trend. For each fold there is a peak and minimum
in the load compression curve. In the first few folds, however, there is an intermediate peak
and mtermediate minimum, see Figs 5 and 6. The intermediate peak between the second
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Fig. 6. Effect of folding parameter on the post collapse load-compression curve of D =43 mm,
t = 1.8 mm steel tube.

and the third peak is the highest of all the intermediate peaks and the intermediate peaks
decay from the second intermediate peak onwards and disappears after fifth fold. The
actual folding mechanisms for the initial fold and after the formation of fifth fold are
discussed below.

All the tested aluminium and mild steel specimens at different load levels were cut
vertically and the profiles of the deformed tubes were traced using a profile projector at a
magnification of 10. The hinge angles were measured from the deformed profiles and are
reported in Table 3. Figure 2 (¢) and (d) shows the deformation profiles of the vertically
cut tube specimens. It is seen that the deformation is initially localized either at the top or
at the bottom of the tube, and the tube starts bulging outward. When the first peak is
reached the first fold begins to be formed either at the top or at the bottom of the tube, the
tube at this stage is no longer straight. After stage 2 the load-compression curve shows a
decrease in load and reaches the minimum load at stage 3. At stage 3 the bottom arm of
the first fold becomes flat and the top arm is in an inclined position ; the fold is yet not
complete. Thereafter the load increases and when the stage 4 is reached the bottom arm of
the fold bends upward, while the top arm bends further down. In the region between stages
3 and 4, the bottom arm of the fold which is flat at stage 3 acts as a cantilever beam with
the reactions distributed all along the span and making the arm to move upward. At stage
4 only one end of the lower arm gives support at the bottom. The applied load is eccentric
with respect to the bottom support. The first hinge corresponding to the next fold is formed
and the load starts decreasing after stage 4 and reaches the intermediate minimum at stage
5. Between stages 4 and 5. the top arm bends further down which causes the bottom arm
to become horizontal and curvature is formed around the middle hinge of the fold. The
first fold is complete at stage 5. After stage 5 the load increases up to the second peak. In this
region the second fold starts bulging outward. At stage 6 all the four hinges corresponding to

Table 3. Measured hinge angles of aluminium and steel tubes

Specimen

dimension Hinge angles (radians)

(mm) %4 xAs % %Ay
Aluminium 0.146 0.127 0.06 0.044
R =248 1.825 1.459 0.993 0.518
t=106

Steel 0.176 0.115 0.104 0.065
R=215 1.830 1.523 1.170 0.989

t=1.8
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the second fold are formed and stages from 1 to 6 are repeated for the first four to five
folds.

Some tube specimens were tested up to 6 to 7 folds and were cut vertically. The fold
formation after the 5th fold is different from the earlier folds and the intermediate peak in
the corresponding load compression curve disappears after the fifth fold. In the earlier
stages (first five folds) even after the minimum load is reached, the bending of the top arm
of the fold is very much controlled by the bottom arm of the immediate fold to follow and
the first hinge corresponding to this fold is formed only when the intermediate peak is
reached. As soon as this hinge is formed the top arm of the earlier fold is allowed to bend
freely and the fold is completely formed when the intermediate minimum is reached. In the
first five folds, the fold is controlled by the next fold to follow. As the folding process
continues the control of one fold over the previous fold decreases and becomes ineflective
after five folds. Each fold is then independent of the next fold.

ANALYSIS

In the analysis that follows, it is assumed that the fold formation is symmetrical about
its middle plane and the tube folds both internally and externally. The folding parameter
{m—the ratio of inside fold to the fold length) is introduced as a variable in the energy
terms due to bending of plastic hinges and due to the hoop strains. Expressions were
obtained to find the fold length, mean collapse load and the post collapse load-compression
curve in terms of m that varies between 0 and 2/3.

An approximate analysis to include the non symmetrical nature of the fold formation
has also been given later. Expressions to find the post collapse load-compression curves are
established by considering that the four hinge angles corresponding to the four hinges of a
fold are different, as is actually observed in the experiments.

EXPRESSIONS TO FIND THE FOLD LENGTH, MEAN COLLAPSE LOAD AND THE POST
COLLAPSE LOAD-COMPRESSION CURVE

The deformation profile considered for analysis is given in Fig. 7a, and the following
assumptions are made in the analysis.

1. Foldingis symmetric about the middle hinge and hence only half of the fold is considered.
2. The hinge angles corresponding to the hinges at A and B are the same.

3. AB=BB = B'C=1/3.

4. The point A’ is the position of the mean radius. AA’ folds inside. A'C folds outside the
tube radius. AA" = mL. where m is the folding parameter; it varies from 0 to 2/3.
Expressions were obtained by first considering that m varies from 0 to 1/3 and then 1/3 to
2/3. The profile is taken to be curved in the region AB and flat in the region BB’ (as was
assumed by Grzebeita (1990)).

Case I: m varies from Q to 1/3
The energy to bend the hinges for a small increment of angle d« is

where

RA = R_pa(l ‘COSO(I),

AA
A =—, o = 3Imu

a
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Fig. 7. The profile of the deformed tubes. (a) Hinge angle is same for all the hinges (m < 1/3).
(b) Hinge angle is same for all the hinges (m = 1/3). (¢) All hinge angles are different (m < 1/3).
(d) All hinge angles are different (m = 1/3).

L
R. = R+p,(cosa, —Cosoz)+§sina+pa(l—cosoc) (3)
and therefore the bending energy becomes
L
dW, = 4nM, {2R+2pu(cosoz1 —cosa)+ —3~sin oc} do 4)

where p, is the radius of curvature of AB and B'C.
The incremental hoop strain for the small increment of do at any point between A and

A is
) x . {xo d
P, <8N, mLsm il oy

(5)
Xo
R—p, {cos (;12)—(:05 a,}

and the corresponding incremental energy between the limits 0 and mL is

de() = —
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(6)

L fsina CoS o sin o
dh, =f oy| deg| AV = 2royt(mL)” { Ly = l}da,.
" o)

% i %

In the region A'B the incremental Hoop strain and the corresponding incremental energy
are given by

. N X . (xe d
D sin «, mLsm il o

dggy=———F—————<— and

)
R+p,|cosa, —cos <—
mlL

s I sin x, 1 1 | .
dW,, = 2noytl” < —m 3 + MCOS O — = COS X |+ 9,3(smoc—smoc]) do.
o

o 3%? 3
(7
Similarly in the region BB’
L
. , L T3
pa{smada—smalda1}+§cosadoc T
dey =
L
R+ )+£ i ifj
palCOsSo;, —cosu 3smoc 7
3
L (1/1 . ) 1
dW,; = 2ro,t— {— | zsina—msing, |+ —-cosapdo (8)
3 jx\3 6
and between B" and C,
2L
x*>a 2L
L 3 NE
p.(sinxdax—sine, dogy ) + gcosadcx‘#pasin — do 7
3 3
dey = -
i L
. x—5 )
p(,(cosoz,—cosoc)+§sinoc+ﬂa 1 —cos —
3
L {171 1 1 /si c
dW,, = 2neyt— <~ | =sinx—msina, |+ -cosa+ — S tosx dao. %)
3 |x2\3 3 308 o

The total incremental strain energy for the small increment of dx is
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dWT = de+2{dWhl +dth +dWh3+dWh4}

2L d d L
=4gM, 2R+ — cosm Cx  cosxdx + —sinado
z ® o 3

, sina, 2sina 2 1
+4no L <m(2m—1)——+ ——— + —— | mcosx, — S COSx
lo'é 9 a 33(2 3

2 . . 1
+%(sm1—smx,)+6cosa}dm (10)

From Fig. 7(a) the expression for the deformation ¢ is given by

0 L
izL—gcosa—2pusinoc. (1D

Differentiating J, the incremental displacement dd is given by

dd

2L {2 sina

= —— —2cosx+asinrx}do¢. (12)
3

The corresponding work done by the applied load is given by
dw? = pdod. (13)

The post collapse load-compression curve corresponding to an oscillation from a peak to
a minimum in a load-compression curve, is obtained by equating eqns (10) and (13).

EXPRESSIONS TO FIND THE FOLD LENGTH

The half fold length is obtained by minimizing the total potential energy with respect
to L. Integrating the total incremental energy between 0 to «,,—the maximum hinge angle,
the total energy is given by

2 , 3 L 2L ,
W, = _ﬁnaot' I— EP‘ 2Ra,, + §(1 —CoS %,,) + ?X* +4nogtL-y*
\/// =

Y- {J“rncoscxl do _J“mcosadx} (14)
0 % 0 &

and

*m 1N A 2 (*msina 1 . .
Y* = m(m—l)J Lda+ —J ——do+ —(sina,,, —sina,
0 % 9 0 & 90(,',,
+ 1 /1 + 1.
—— | = cosa,, —mCcos d,, —sin
3, \ 3 : 6
e 3’”“’11' (] 5)

The total work done by the applied load is given by
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Wp= Por (15)
where 6, = 2L —1—2p, is the effective crushing distance corresponding to one complete

fold. Equating the above equations and minimizing with respect to L, the expression for L
is given by

1 _ 1 t 3 _
= _ _ = p2 _ . £
L e {2PR<1 3a> ’§<1 4P )(1 Cos o, +2X )} (16)

3\/
The maximum hinge angle «,, is obtained from the equation
3ta+2L—2Lacosa—dasing =0 (17)

which is obtained by equating eqns (11) and (15a).

MEAN COLLAPSE LOAD

The final expression to find the mean collapse load corresponding to one complete
fold is obtained by equating the total internal energy to the total work done by the applied
load, and the final expression is given by

P, 1

!
P ——’2?{’:
° R{2L—z—} /3

3 L 2L 5
I_ZP 2Ram+§(l—cosam)+?X* +2L°Y*3
am

(18)
The values of L, «,, and P,, are obtained by solving eqns (16), (17) and (18) iteratively.

Post collapse load-compression curve

The post collapse load-compression curve (corresponding to the concertina mode)
from the peak to the minimum in an oscillation of the load-compression curve is obtained
by equating the total incremental strain energy and the work done by the applied load due
to the incremental displacement dé. The final expression to find the load-compression curve
1s given by

2L i L
47'EM;, {2R+ T {%ﬁ - _751;1 a}"l- gSin 0(}

5 sina, 2sina 2 1
+4no,L- <m(2m—1) + -+ mMCoS %, — 5 COS
3 9 « 32 3

2 . 1 2L) {2sing .
+ ——(sinx—sina; )+ —cosa, = P —2cosa+asing y (19)
g3 6 o

3a
where
2 3 _
M, = /ﬁ<l—4P2>MF and
\//
_ 3 5 Gy
6y =4 —Pcosa+ I—ZPhcosrot 5 (20)
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Here P = P/P,, where P, is the load corresponding to the ultimate stress (g,) in the uni-
axial tension. For a known value of 8, « is calculated from eqn (11) and is used in eqn (19)
to get P.

Case II—Folding parameter m varies between 1/3 and 2/3

In the previous case it was considered that m varies from 0 to 1/3. The same formulation
cannot be continued further, the reason being that the region AB is curved and BB’ is flat.
The position of radius R at A’ lies between B and B’ (see Fig. 7(b)). The mean radii at A
and C are given by

L
R,=R—p, (1 —cosu)— (mL— 5) sina and

2L .
Ry =R+ T—rnL sino+ p,(1 —cosa),

respectively. Substituting these values in eqn (2), the bending energy term becomes
dW, = 4nM,{2R+ L(1 -2m)sina} do 2n

and the energy due to the hoop strains is given by

, {sina 1 1 1\ /2 2
dW, = dno,tL {W+{§+E((m—§> +(3 —m> )}cos a}dz. (22)

Equating the total incremental energy (dW, = dW,+dW),) to the total work done by the
applied load due to the incremental displacement dé and substituting for A, and g, in
terms of M, and g, . the final expression to find the load deflection curve is given by

_(2RL sinx X t 3 )
Pi——p<2—— —2cosa+tasina,— —|{1— =P | {2R+ L(1 —2m)sina}
3 % J3 4

_1_p 13 preogg)isine L1 Y
Cos %+ —4 cOs” « 9a+9+2 m 3
2 2
+<§—m> )}cosx}zo. (23)

The expression to find the maximum fold length is given by

1 _ 1 ! 3,
L:ZZ{LDR (1—5)—$<1—2P )(]—cosoc,,,)(l—2m)} (24)

where

Z—l acmsinocd 11 12+ 2 N .
=5) s o+ 9+2 m- 3 3 m sin o,

and the corresponding expression for the mean collapse load is
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Fig. 8. Variation of fold length with m ( folding parameter).
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(25)

In calculating the fold length and the mean collapse load the hoop stress g, = o, is used.

The empirical relation that relates N (ratio of inside fold to outside fold) with D/ is
given in eqn (1). The folding parameter m (ratio of inside fold to fold length) is related
with N as (see Figs 7(a) and 7(b)) for

L_ L 3
(N—l)pa(l—cosa)+N§sm(x {f_“[
| S 3307
Z5, I=- . , =|— 26
"m=3 (N+1)sina) " [ L l (26)
and for
m>1, N Po(l—cosa) * mzicos" 1+NQ2cosa—asina—1) .
3 L . 3 1+ N
551n9c+p¢,(1+cosoc,—2cosoz)
27

The analysis developed above is for the fold formation which is symmetric about its mid
plane. For a given value of D/r, N is computed from eqn (1) and the value of m is known
from eqns (26) and (27) for m < 1/3 and = 1/3, respectively. The fold length, maximum
hinge angle and the mean collapse load are thus computed for a given value of m.

The variations of the fold length and mean collapse load for different values of m
increasing from 0 to 2/3, are presented in Figs 8 and 9, respectively. It is seen in Fig. 8 that
the fold length for a given D/t increases with m, up to m = 1,2, and then begins to decrease.
The fold length is thus maximum when the folding is symmetrical about the mean radius.
The mean collapse load however decreases with increase in m. The mean collapse load is
thus minimum at m = 1/2, see Fig. 9. The falling portion of the post collapse load-
compression curves for a given D/f ratio have been computed for various values of m.
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Fig. 10. Post collapse load-compression curve of D = 49.6 mm. 1 = 1.6 mm aluminium tube.

For the aluminium specimen of D = 49.6 mm, r = 1.6 mm, these curves computed for
m =0, 1/3 and 1/2 are superposed on the experimentally obtained load-compression curve
shown in Fig. 5. Similarly for the steel specimen of D =43 mm, = 1.8 mm, curves
computed for m = 0. 1/3 and 1/2 are superposed on the corresponding experimental graph
in Fig. 6.

It may be seen that the computed curve for m = 1/3 is appreciably different from the
curve for m = 0. The curves for m = 1/3 and m = 1/2 are, however, not so different.

For the above dimensions of the tubes, however, the values of m are 0.351 and 0.329
for the aluminium and steel specimens, respectively. The computed curves for these values
of m are superposed on the experimental results as shown in Figs 10 and 11, respectively.
In what follows, we present the analysis for the Joad-compression curve when the fold
formation is not symmetrical about the mid plane of the fold.

Analysis of axi-symmetric folding—nonsymmetric about its mid plane

The profile considered in this analysis is shown in Fig. 7(c). Since in this case all the
hinge angles are different, and the profile is not symmetric about the mid plane of the fold,
one complete fold is considered for the analysis. It is seen in the experiments that the fold
formation starts before the peak load is reached and the fold is yet not complete at the
minimum load. The measured hinge angles at the peak and minimum loads are given in
Table 2.

The incremental energy in bending of the hinges for a small increment of da; is
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—— Experiment

—*— Hinge angles are same m=10329

1.0 [ —e— Hinge angles are different

1 | | I 1 I I | | | |
0 10 20 30 40 50 60 70 80 90 100 110
8 (mm)
Fig. 11. Post collapse load-compression curve of D = 43 mm, ¢ = 1.8 mm steel tube.
dW, = 2eM,{R o, + Ry, dots + Ryo dots + Ry doty ) (28)

where

R,=R—p,(1—cosa,),u, =30,m

L . (2, +as)
Rz = R+p,(cosa,—coso;)+ §Sln A+ pp(1 —Cosy), 2, = Y

L .
Rgs = R+ py (1 —cosas) +p,{cosa; —cosa, )+ gsm o9 = 3ma, and

_ A3+ %y
e 3 s

o, Ry, = R—p,(1 —cosag). (29)

It is noted that the region between A’ and B’ in Fig. 7(c) is not straight. The angle at A" is

(n/2) — 2, and the angle at B’ is (7/2) —, and to achieve simplification the angles at A” and

B’ are assumed to be equal and their value is taken as the average of the two hinge angles.
The energy due to the hoop strains between A and D is given by

dw, = J 04| deg| dV. (30)
AD
The different incremental strain components between A and D are given by
—x . (xa, .
—Pq ;Zsm L +sina, pdo,
X,
R—p, (cos {m—}—cos aA>
mL
. x ., {xoy
P —SIno, + ESIH ;‘L‘
X0,
R+p, {cos o4 —COS {}}
mL

degy =
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. . L
paisina, du, —sina, da,} + (x— S)cos oy doy

desp = 7
R+ p,(cosa,—cosa,)+ (x— 3>sincx,,

Paising, do, —sina, da,}
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+§cosa,da‘4r+ph I sin I deey
3 3
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3
2L—x . ((RL—x)u .
—ph{— L sm{ L G}—f-smuc}dac
dens = < {(2L x)ag} )
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) 2L—x . (QL—x)
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de... =
bac { {(ZL— x)oa(,}}
R+ p, <cosa;—cos
prisina, doy —sin o dag} + < x> cos o doe
dece =
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pa{sinoy, doy —sin o dog}
4L 4L
L ?—x ?—Y O(;
+§cosa(~da(~+pbl I sin 3 do,
3 3
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3

The corresponding energy terms are given by

dW,, = 2nog t{mL}> { " ; -
y a’ o

sing, Coso, Sinoy
+ de
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, 1 sin a4
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3 3 a 3
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The total energy 1s given by
dWT = dI/Vv/7 +dW;,| +dWh2 +dWh3 +dWh4 +dW/,5 +dWh(, +dW;,7 +dth. (33)
From Fig. 7(c), the expression for the deformation § is given by

L . L . i L .
0=0,+0,;=2L—p,sina, — gcosa(«—pbl SIN 0y — Pp, SIN 2y — gcosoc,,—pa sin o .

(34)

The incremental deformation dJ is given by
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3 1;1 L7 3 3 %3 X3
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The expression for the post load compression curve is obtained by equating the total
incremental energy to the incremental work done by the applied load

dW, = Pdé. (36)

For the known value of o, dé is calculated from eqn (35) and the corresponding P is
obtained by equating eqns (33) and (36). The value of the fold length in this analysis is
taken from the symmetric case.

In the case of m > 1/3,

R,=R—p,(1 —coscxﬂ—(m—%)LcosocA/
Ry = R+(§—m)Lcosoc_,,/+pa(l —CoSay)
Ry = R+(§—m)Lcoso¢C+pu(l —COS %)
Ry =R—p.(1 —cosocﬂ——(m—%)LcosozC

oy o Ay + 0ty
oAy = 5 and O(C=T.

The energy due to the hoop strains are
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3 3
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2L L
dWhg = 27‘[0'962' ('3_ —HZL>3COS a(; dOC(,

LN [sina;  cosx
+27w!;3t<> S " 3]do@.
3 o3 o3

The total incremental internal energy is

dWT = dW;,+dWh here
dW, = dW,, +dW,, +dW,; + AW,  +dW,s +d W +dW,; +d W5
dWh = 2TIM;{R,4 dOC, +RB| da: +R32 da3 +RD da4}.

The computed falling portion of the load-compression curve for a aluminium tube of
D =496 mm, r = 1.6 mm is shown superposed on the experimental results and those
obtained from the analysis of the symmetric case in Fig. 10. In Fig. 11, similar results for a
mild steel tube of D = 43 mm, ¢ = 1.8 mm are presented.

It is seen that the results obtained from the analysis which considers the fold formation
as asymmetric about its mid plane match the experiments better.

CONCLUSIONS

Experiments in axial compression of aluminium and mild steel round cylinders which
collapse in axisymmetric concertina mode show that the tubes fold both internally and
externally. The extent of internal folding is seen to depend on D/ ratio. Both the fold length
and the mean collapse load vary with the variation in folding parameter m.

The actual fold is seen to be nonsymmetric about its mid plane. Analysis is first
presented by considering the fold formation to be symmetric and the results are compared
with the experiments. It is seen that the fold length increases with the increase in the folding
parameter from 0 to 1/2 and thereafter it begins to decrease. Thus the fold length is
maximum when internal and external folding are equal. The mean collapse load is minimum
when internal and external folding are equal. Analysis for the non-symmetric fold formation
is also presented for the case when the fold formation is non-symmetric about the mid
plane of the fold. The results obtained are seen to fit the experimental results better.
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